A Neuromechanical Model of Spinal Control of Locomotion

نویسندگان

  • Sergey N. Markin
  • Alexander N. Klishko
  • Natalia A. Shevtsova
  • Michel A. Lemay
  • Boris I. Prilutsky
  • Ilya A. Rybak
چکیده

We have developed a neuromechanical computational model of cat hindlimb locomotion controlled by spinal central pattern generators (CPGs, one per hindlimb) and motion-dependent afferent feedback. Each CPG represents an extension of previously developed two-level model (Rybak et al. J Physiol 577:617–639, 2006a, J Physiol 577:641–658, 2006b) and includes a half-center rhythm generator (RG), generating the locomotor rhythm, and a pattern formation (PF) network operating under control of RG and managing the synergetic activity of different hindlimb motoneuronal pools. The basic two-level CPG model was extended by incorporating additional neural circuits allowing the CPG to generate the complex activity patterns of motoneurons controlling proximal two-joint muscles (Shevtsova et al., Chap. 5, Neuromechanical modeling of posture and locomotion, Springer, New York, 2015). The spinal cord circuitry in the model includes reflex circuits mediating reciprocal inhibition between flexor and extensor motoneurons and disynaptic excitation of extensor motoneurons by load-sensitive afferents. The hindlimbs and trunk were modeled as a 2D system of rigid segments driven by Hill-type muscle actuators with force-length-velocity dependent properties. The musculoskeletal model has been tuned to reproduce the mechanics of locomotion; as a result, the computed motion-dependent activity of muscle group Ia, Ib, and II afferents and the paw-pad cutaneous afferents matched well the cat in vivo afferent recordings reported in the literature (Prilutsky et al., Chap. 10, Neuromechanical modeling of posture and locomotion, Springer, New York, 2015). In the neuromechanical model, the CPG operation is adjusted by afferent feedback from the moving hindlimbs. The 22 S. N. Markin et al. model demonstrates stable locomotion with realistic mechanical characteristics and exhibits realistic patterns of muscle activity. The model can be used as a testbed to study spinal control of locomotion in various normal and pathological conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of a Neuromechanical Walking Control Model Using Disturbance Experiments

Neuromechanical simulations have been used to study the spinal control of human locomotion which involves complex mechanical dynamics. So far, most neuromechanical simulation studies have focused on demonstrating the capability of a proposed control model in generating normal walking. As many of these models with competing control hypotheses can generate human-like normal walking behaviors, a m...

متن کامل

Afferent control of locomotor CPG: insights from a simple neuromechanical model.

A simple neuromechanical model has been developed that describes a spinal central pattern generator (CPG) controlling the locomotor movement of a single-joint limb via activation of two antagonist (flexor and extensor) muscles. The limb performs rhythmic movements under control of the muscular, gravitational and ground reaction forces. Muscle afferents provide length-dependent (types Ia and II)...

متن کامل

The neuromechanical tuning hypothesis.

Simulations performed with neuromechanical models are providing insight into the neural control of locomotion that would be hard if not impossible to obtain in any other way. We first discuss the known properties of the neural mechanisms controlling locomotion, with a focus on mammalian systems. The rhythm-generating properties of central pattern generators (CPGs) are discussed in light of resu...

متن کامل

A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation.

Locomotion in mammals is controlled by a spinal central pattern generator (CPG) coupled to a biomechanical limb system, with afferent feedback to the spinal circuits and CPG closing the control loop. We have considered a simplified model of this system, in which the CPG establishes a rhythm when a supra-spinal activating drive is present and afferent signals from a single-joint limb feed back t...

متن کامل

Chondroitinase ABC Administration in Locomotion Recovery After Spinal Cord Injury: A Systematic Review and Meta-analysis

Introduction: The present systematic review and meta-analysis aims to conduct a comprehensive and complete search of electronic resources to investigate the role of administrating Chondroitinase ABC (ChABC) in improving complications following Spinal Cord Injuries (SCI). Methods: MEDLINE, Embase, Scopus, and Web of Sciences databases were searched until the end of 2019. Two independent reviewe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016